Five things to know about Dark Matter

Alan Robinson

Nov 9, 2016 Fermilab Ask-a-Scientist

Five things to know about Dark Matter

Does not affect light

- Does not affect light
 - Does not absorb light black

Interstellar and intergalactic dust does absorb light

CRAB NEBULA

The absorbtion changes with the wavelength of light, and depends on where you look

Dust in the Milky Way

- Does not affect light
 - Does not absorb light black
 - Does not refract light transparent

- Does not affect light
 - Does not absorb light black
 - Does not refract light transparent
 - Does not create light

- Does not affect light
 - Does not absorb light black
 - Does not refract light transparent
 - Does not create light
 - Electrically neutral

Long baseline neutrino facility

Electrically neutral particles pass through matter without stopping

Neutral particles are hard to detect

Five things to know about Dark Matter

Five things to know about Dark Matter

Matter

- Dark matter has mass

Planets revolve more slowly the farther they are from the massive sun

the galaxy's dark matter is much larger than its stars in size and mass

the galaxy's dark matter is much larger than its stars in size and mass

galactic rotation shows the hidden dark matter

galactic rotation shows the hidden dark matter

Matter

- Has mass
 - ×6 more mass than visible stars and dust
 - Seen with
 - Galactic rotation
 - Gravitational lensing
 - Big Bang
- Must be radioactively stable

Gravitational Lensing

How light from distant galaxies bends as it passes closer galaxies depends on the galaxy mass.

The size and shape of ripples in the early universe depends (among other things) on how much dark matter is present

WMAP9

Five things to know about Dark Matter

Five things to know about Dark Matter

Builder of galaxies

z = 14.550 Mpc/h

Galaxies formed inside clumps of dense gas where dark matter was concentrated 14 billion years ago.

500 Mpc/h

Without dark matter, our galaxy wouldn't have formed.

Builder of Galaxies

-Galaxies were made where there was dark matter to help concentrate gas and dust.

Without dark matter, our galaxy wouldn't have formed.

Five things to know about Dark Matter

Builder of galaxies

Five things to know about Cold Dark Matter

Builder of galaxies

Cold

Particles travelling slower
 than the speed of light

v < c Loses velocity

v ~ c Loses relativistic mass

Cold

- Particles travelling slower
 than the speed of light
 - Stays within galaxies
 - Matches the observed expansion of the universe.
- Must be a heavy particle in thermal models
 - · keV/c² to TeV/c² mass

Five things to know about Cold Dark Matter

Builder of galaxies

Five things to know about Cold Dark Matter

Builder of galaxies

We know the standard model of particle physics

We know the standard model of particle physics

Dark

- Dark
- Massive and stable

- Dark
- Massive and stable
- Cold

We know the standard model of particle physics doesn't include dark matter.

We know the standard model of particle physics doesn't include dark matter. or solutions to

- Matter/antimatter
- Strong CP problem
- Hierarchy problem

Extensions to the standard model include dark matter and solutions to

- Matter/antimatter
 - Asymmetric DM
- Strong CP problem
 - Axions
- Hierarchy problem
 - Supersymmetry

We know

Discovering dark matter interactions is key to understanding how our universe works.

Five things to know about Cold Dark Matter

Builder of galaxies

Discovering dark matter interactions is key to understanding how our universe works.